股票麥考勒久期公式
1. 久期的計算的計算公式是什麼
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
(1)股票麥考勒久期公式擴展閱讀:
久期定理
定理一:只有零息債券的馬考勒久期等於它們的到期時間。
定理二:直接債券的馬考勒久期小於或等於它們的到期時間。
定理三:統一公債的馬考勒久期等於(1+1/y),其中y是計算現值採用的貼現率。
定理四:在到期時間相同的條件下,息票率越高,久期越短。
定理五:在息票率不變的條件下,到期時間越久,久期一般也越長。
定理六:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
2. 請問久期公式是什麼
久期=債券價格改變的百分比/收益率改變的百分比=(-1/p)*(dp/dy)
3. 麥考利久期,有效久期,修正久期
修正的麥考利久期=麥考利久期/(1+y),y為應計收益率。
我沒聽說過有效久期這個概念。
4. 什麼是久期什麼是麥考利久期謝謝了,大神幫忙啊
久期,也可以翻譯為麥考利持續時間。是由到期收益率的定義推導出來的。到期收益率公式知道吧,等式兩邊分別對到期收益率y求導,再在等式兩邊同除以價格p,就將其中一部分定義為D久期。 久期是一種測算債券發生現金流的平均期限的方法,可以用於測度債券對利率變化的敏感性。 弗雷得里克.麥考利根據債券的每次息票利息和本金支付時間的的加權平均來計算久期,稱為麥考利久期 (MACAULAY'S DURATION)。具體的計算將每次債券現金流的現值除以債券價格得到每一期現金支付的權重,並將每一次現金流的時間同對應的權重相乘,最終合計出整個債券的久期。 久期是固定收入資產組合管理的關鍵概念有以下幾個原因: 1、它是對資產組合實際平均期限的一個簡單概括統計。 2、它被看做是資產組合免疫與利率風險的重要工具。 3、是資產組合利率敏感性的一個測度,久期相等的資產對於利率波動的敏感性一致。 到期時間、息票率、到期收益率是決定債券價格的關鍵因素,與久期存在以下的關系: 1、零息票債券的久期等於到它的到期時間。 2、到期日不變,債券的久期隨息票據利率的降低而延長。 3、息票據利率不變,債券的久期隨到期時間的增加而增加。 4、其他因素不變,債券的到期收益率較低時,息票債券的久期較長。 麥考利久期定理:關於麥考利久期與債券的期限之間的關系存在以下6個定理:定理1:只有貼現債券的麥考利久期等於它們的到期時間。定理2:直接債券的麥考利久期小於或等於它們的到期時間。只有僅剩最後一期就要期滿的直接債券的麥考利久期等於它們的到期時間,並等於1。定理3:統一公債的麥考利久期等於(1+1/r),其中r是計算現值採用的貼現率。定理4:在到期時間相同的條件下,息票率越高,久期越短。定理5:在息票率不變的條件下,到期時期越長,久期一般也越長。定理6:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
5. 股票和債券久期的推導 (表明用的什麼模型)
股票沒有久期。
1.久期的計算公式 久期的計算有不同的方法。首先介紹最簡單的一種,即平均期限(也稱麥考利久期)。這種久期計算方法是將債券的償還期進行加權平均,權數為相應償還期的貨幣流量(利息支付)貼現後與市場價格的比值,即有: D=1×w1+2×w2+…+n×wn 式中: ci——第i年的現金流量(支付的利息或本金); y——債券的到期收益率; P——當前市場價格。 例:某債券面值100元,票面利率5%,每年付息,期限2年。如果到期收益率為6%,那麼債券的久期為多少? 解答:第一步,計算債券的價格:利用財務計算器N=2,I/y=6,PMT=5,FV=100,CPT PV=? PV=98.17。 第二步,分別計算w1、w2: w1=4.72/98.17=0.0481 w2=93.45/98.17=0.9519 第三步,計算D值: D=1×0.0481+2×0.9519=1.9519
6. 關於久期的解釋和計算方法
久期也稱持續期,是1938年由F.R.Macaulay提出的。它是以未來時間發生的現金流,按照目前的收益率折現成現值,再用每筆現值乘以現在距離該筆現金流發生時間點的時間年限,然後進行求和,以這個總和除以債券各期現金流折現之和得到的數值就是久期。
『久期,全稱麥考利久期-Macaulay ration, 數學定義:
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
Macaulay Duration Example
Macaulay Duration Example
通過下面例子可以更好理解久期的定義。
例子:假設有一債券,在未來n年的現金流為(X1,X2,...Xn),其中Xi表示第i期的現金流。假設利率為Y0,投資者持有現金流不久,利率立即發生升高,變為Y,問:應該持有多長時間,才能使得其到期的價值不低於利率為Y0的價值?
通過下面定理可以快速解答上面問題。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要條件是q=D(Y0)。這里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即為所求時間,即為久期。
上述定理的證明可通過對Y導數求倒數,使其在Y=Y0取局部最小值得到。
拓展資料
在債券分析中,久期已經超越了時間的概念。修正久期大的債券,利率上升所引起價格下降幅度就越大,而利率下降所引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強;但相應地,在利率下降同等程度的條件下,獲取收益的能力較弱。
正是久期的上述特徵給我們的債券投資提供了參照。當我們判斷當前的利率水平存在上升可能,就可以集中投資於短期品種、縮短債券久期;而當我們判斷當前的利率水平有可能下降,則拉長債券久期、加大長期債券的投資,這就可以幫助我們在債市的上漲中獲得更高的溢價。
7. 一個債券價格和麥考利久期的計算
修正久期=麥考利久期÷[1+(Y/N)],
因為這里,1+Y/N=1+11。5%/2=1。0575;
因此,正持續時間=13.83/1.0575=12.37163,D是最合適的答案。
MACDUR=maturity(T),修改後的存續期=T/[1+(Y/N)],Y為年利率,復利次數在N個表中計算。
對於付息債券,MACDUR=每期貼現率除以當前價值乘以期數,修改後的期限=MAC/[1+(Y/N)]。
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
(7)股票麥考勒久期公式擴展閱讀:
調整期是指特定債券的到期收益率相對於麥考利期的一個小變化。這個比率是基於債券到期收益率很小的前提下的近似比率。債券價格是衡量債券價格對利率變動敏感性的一個較為准確的指標。
當投資者判斷當前的利率水平有可能上升時,他們將注意力集中在短期債券上,縮短債券的期限。當投資者判斷當前利率可能會下降時,延長債券到期日並加大對長期債券的投資,有助於投資者在債券市場上漲時獲得更高的溢價。
修訂的期限定義:
P/P物質-D乘以y+conv(1/2)乘以y²
由該公式可以看出,對於給定的到期收益率變化較小的情況下,債券價格的相對變化與修正後的期限之間存在嚴格的比例關系。因此,考慮到Y收益率,調整期是衡量債券價格對利率變化的敏感性的更准確的指標。
8. 請問什麼是久期什麼是麥考利久期
久期,也可以翻譯為麥考利持續時間。是由到期收益率的定義推導出來的。到期收益率公式知道吧,等式兩邊分別對到期收益率y求導,再在等式兩邊同除以價格p,就將其中一部分定義為D久期。
久期是一種測算債券發生現金流的平均期限的方法,可以用於測度債券對利率變化的敏感性。
弗雷得里克.麥考利根據債券的每次息票利息和本金支付時間的的加權平均來計算久期,稱為麥考利久期
(MACAULAY'S DURATION)。具體的計算將每次債券現金流的現值除以債券價格得到每一期現金支付的權重,並將每一次現金流的時間同對應的權重相乘,最終合計出整個債券的久期。
久期是固定收入資產組合管理的關鍵概念有以下幾個原因:
1、它是對資產組合實際平均期限的一個簡單概括統計。
2、它被看做是資產組合免疫與利率風險的重要工具。
3、是資產組合利率敏感性的一個測度,久期相等的資產對於利率波動的敏感性一致。
到期時間、息票率、到期收益率是決定債券價格的關鍵因素,與久期存在以下的關系:
1、零息票債券的久期等於到它的到期時間。
2、到期日不變,債券的久期隨息票據利率的降低而延長。
3、息票據利率不變,債券的久期隨到期時間的增加而增加。
4、其他因素不變,債券的到期收益率較低時,息票債券的久期較長。
麥考利久期定理:關於麥考利久期與債券的期限之間的關系存在以下6個定理:定理1:只有貼現債券的麥考利久期等於它們的到期時間。定理2:直接債券的麥考利久期小於或等於它們的到期時間。只有僅剩最後一期就要期滿的直接債券的麥考利久期等於它們的到期時間,並等於1。定理3:統一公債的麥考利久期等於(1+1/r),其中r是計算現值採用的貼現率。定理4:在到期時間相同的條件下,息票率越高,久期越短。定理5:在息票率不變的條件下,到期時期越長,久期一般也越長。定理6:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
9. 麥考利久期公式詳解
修正久期=麥考利久期÷[1+(Y/N)]
在本題中,1+Y/N=1+11.5%/2=1.0575
所以修正久期=13.083/1.0575=12.37163
D是最合適的答案