神經網路概念的股票
㈠ 基於遺傳演算法的神經網路預測股票的價格有現實意義嗎 知乎
有一定參考價值
但你不能以此為實際購買股票的唯一依據,不然會賠的很慘
不要只依賴演算法結果…
望採納
㈡ 人工智慧概念股有哪些 人工智慧晶元誰是龍頭
人工智慧包含硬體智能、軟體智能和其他。
硬體智能包括:漢王科技、康力電梯、慈星股份、東方網力、高新興、紫光股份。
軟體智能包括:金自天正、科大訊飛。
其他類包括:中科曙光、京山輕機。
㈢ 你好看你發帖問過用BP神經網路預測股票價格的提問
首先你要搞清bp的基本原理,基於梯度法的原則,因為這種演算法按梯度走,極易進入局部最小點二出不來,所以對於比較簡單的模型如高斯曲面有一定的逼近能力,但是現實如你所說的股票,相關因素特別多,也就是說神經網路輸入通道會很多,而且通道和通道直接喲相關性,模型在超曲面上就像是大海海面一樣跌宕起伏,使用bp明顯太過於困難,而且實際中樣本有限的很,bp理論基於樣本無限的學習規則(21實際70年代),你要證明的話,可以例舉一個簡單的單極二次型函數,用來試試看bp能否完全逼近這個函數
㈣ 基於神經網路的股票預測
還要含代碼?
你的 t 讓門夾了吧?
㈤ 用人工神經網路進行股票預測,數據樣本為開盤,收盤,最高,最低,成交量,成交額。用weka或matlab實現
把樣本數據分為訓練樣本和測試樣本,然後用訓練樣本訓練網路,用測試樣本進行模型驗證
㈥ 神經網路 能對股票 預測嗎
因為他么有未來函數,但是有未來函數的又是會隨著行情的演變而變的,所以沒有預測的軟體,只有預測的人,盤感很重要,不要迷信軟體,那樣不是會看軟體的人就能賺錢了。關注資金動向是你首先應該學習的。
㈦ 請教用人工神經網路進行股票預測在weka
預測股票可不是有以往股票數據就能的,要考慮因果性,現實事件與股票波動有因果性,也就是時序性。在這情況下有LSTM單元組成循環神經網路可以做到,但訓練集的強度跟體積可是很大的,這需要注意。
㈧ 利用BP神經網路預測股票價格走勢
參考 matlab神經網路30例 中有一個股票預測的案例
我覺得svm做這個更好
㈨ BP神經網路預測股票
感知器你知道么,如果不知道,建議你買《人工神經網路原理》馬銳著,看完70頁你就會了。里邊也有你這個問題的設計思路。用c語言matlab都能編,如果有問題,請留言,想問下你是什麼專業?