无限猴子定理
A. 有没有一本书包含很多很多关于效应,定理解释的书 例如“蝴蝶效应” “老祖母悖论” “无限猴子定
如果一个人真的“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母,那么这个跨时间旅行者本人还会不会存在呢?这个问题很明显,如果没有他的外祖母就没有他的母亲,如果没有他的母亲也就没有他,如果没有他,他怎么“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母。这就是“外祖母悖论”。
B. 无限猴子定理的起源
一、无限猴子定理的起源是:
无限猴子定理是来自E.波莱尔一本1909年出版谈概率的书籍,当中介绍了“打字的猴子”的概念。这个定理是概率论中的柯尔莫哥洛夫的零一律的其中一个命题的例子。不过,当波莱尔在书中提出零一律的这个特例时,柯尔莫哥洛夫的一般叙述并未给出(柯尔莫哥洛夫那本概率论的著作直到1933年才出版)。
零一律是概率论中的一个定律,是安德雷·柯尔莫哥洛夫发现的,因此有时也叫柯尔莫哥洛夫零一律。其内容是:有些事件发生的概率不是几乎一(肯定发生),就是几乎零(肯定不发生)。这样的事件被称为“尾事件”。尾事件是由无限多的随机变量的序列来定义的。比如它不是与X1的值无关。比如假如我们扔无限多次硬币,则连续100次数字面向上的事件是一个尾事件。
二、无限猴子定理的含义:
有无限只猴子用无限的时间会产生特定的文章。其实不必要出现了两件无限的事物,一只猴子打字无限次已经足够打出任何文章,而无限只猴子则能即时产生所有可能的文章。
其他取代的叙述,可能是用英国博物馆或美国国会图书馆取代法国国家图书馆;另一个常见的版本是英语使用者常用的,就是猴子会打出莎士比亚的著作。欧洲大陆还有一种说法版是猴子打出大英网络全书
C. 无限猴子定理的介绍
无限猴子定理指一只猴子随机在打字机键盘上按键,最后必然可以打出法国国家图书馆的每本图书。
D. 无限猴子定理的定义
一般关于此定理的叙述为:有无限只猴子用无限的时间会产生特定的文章。其实不必要出现了两件无限的事物,一只猴子打字无限次已经足够打出任何文章,而无限只猴子则能即时产生所有可能的文章。
其他取代的叙述,可能是用英国博物馆或美国国会图书馆取代法国国家图书馆;另一个常见的版本是英语使用者常用的,就是猴子会打出莎士比亚的著作。
E. 无限猴子定理是什么意思
什么是无限猴子定理
无限猴子定理指一只猴子随机在打字机键盘上按键,在无穷久的时间之后打出法国国家图书馆的每一本图书的概率为100%。在乔治·伽莫夫的《从一到无穷大》中,这只猴子还能完整打出《哈姆雷特》全书,以至于莎士比亚扔到纸篓里的每句话。
无限猴子定理的来源
无限猴子定理是来自E.波莱尔一本1909年出版谈概率的书籍,当中介绍了“打字的猴子”的概念。这个定理是概率论中的柯尔莫哥洛夫的零一律的其中一个命题的例子。不过,当波莱尔在书中提出零一律的这个特例时,柯尔莫哥洛夫的一般叙述并未给出(柯尔莫哥洛夫那本概率论的著作直到1933年才出版)。
零一律是概率论中的一个定律,它是安德雷·柯尔莫哥洛夫发现的,因此有时也叫柯尔莫哥洛夫零一律。其内容是:有些事件发生的概率不是几乎一(肯定发生),就是几乎零(肯定不发生)。这样的事件被称为“尾事件”。尾事件是由无限多的随机变量的序列来定义的。比如它不是与X1的值无关。比如假如我们扔无限多次硬币,则连续100次数字面向上的事件是一个尾事件。
一般关于此定理的叙述为:有无限只猴子用无限的时间会产生特定的文章。其实不必要出现了两件无限的事物,一只猴子打字无限次已经足够打出任何文章,而无限只猴子则能即时产生所有可能的文章。
其他取代的叙述,可能是用英国博物馆或美国国会图书馆取代法国国家图书馆;另一个常见的版本是英语使用者常用的,就是猴子会打出莎士比亚的著作。欧洲大陆还有一种说法版是猴子打出大英网络全书。在《从一到无穷大》中,作者则引用了哈姆雷特的例子。
无限猴子定理的证明
简要说明
在无穷长的时间后,即使是随机打字的猴子也可以打出一些有意义的单词,比如,cat, dog。因此,可以类推,会有一个足够幸运的猴子或连续或不连续地打出一本书,即使其几率比连续抓到一百次同花顺还要低。但在足够长的时间(长到你数不清它的秒数有多少位)后,其发生是必定的。
现实证明
不过在现实中,猴子打出一篇像样的文章的几率几乎是零,因为科学家经过反复试验后发现,猴子在使用键盘时通常会连按某一个键或拍击键盘,最终打出的文字不可能成为一个完整的句子。由于英语字母有26个,加上字符等更是不止30个。因此,猴子输出的字符几乎全部是废话,只能在浩如烟海的字母中,找到少许有意义的片段。 这个定理本身在现实生活中是不可能重现的,但这并没有阻止某些人的尝试:2003年,一家英国动物园的科学家们“试验”了无限猴子定理,他们把一台电脑和一个键盘放进灵长类园区。可惜的是,猴子们并没有打出什么十四行诗。根据研究者,它们只打出了5页几乎完全是字母"S"的纸。
打字不容易望采纳谢谢
F. '十大悖论'有哪些
1.电车难题(The Trolley Problem)
“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?
2.空地上的奶牛(The Cow in the field)
认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?
3.定时炸弹(The Ticking Time Bomb)
如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报?
4.爱因斯坦的光线(Einstein’s Light Beam)
爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。
5. 特修斯之船(The Ship of Theseus)
最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?
6.伽利略的重力实验(Galieo's Gravity E)
为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。
7.猴子和打字机(Monkeys and Typewriters)
另一个在流行文化中占了很大分量的思想实验是“无限猴子定理”,也叫做“猴子和打字机”实验。定理的内容是,如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。
8. 中文房间(The Chinese Room)
“中文房间”最早由美国哲学家John Searle于20世纪80年代初提出。这个实验要求你想象一位只说英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸、铅笔和橱柜。写着中文的纸片通过小窗口被送入房间中。根据Searle,房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。
9. 薛定锷的猫(Schrodinger’s Cat)
薛定锷的猫最早由物理学家薛定锷提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因为这件事会否发生的概率相等,薛定锷认为在盒子被打开前,盒子中的猫被认为是既死又活的。
10.缸中的大脑(Brain in a Vat)
想象有一个疯狂科学家把你的大脑从你的体内取出,放在某种生命维持液体中。大脑上插着电极,电极连到一台能产生图像和感官信号的电脑上。因为你获取的所有关于这个世界的信息都是通过你的大脑来处理的,这台电脑就有能力模拟你的日常体验。如果这确实可能的话,你要如何来证明你周围的世界是真实的,而不是由一台电脑产生的某种模拟环境?
(6)无限猴子定理扩展阅读:
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
用对称逻辑解“说谎者悖论”“说谎者悖论”即“我在说谎”这句话中所蕴含的悖论。这个悖论表面上由“我在说谎”和“我说实话”这两个对立的“命题”组成,实际上这两个“命题”并不等价——前一个命题包含思维内容,后一个“命题”只是前一个命题的语言表达式,因此后一个“命题”不是严格意义上的命题。长期以来人们之所以把其看成悖论,是由于把两个“命题”看成等价,即都是思维内容和语言表达式统一的命题。只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,“我在说谎”这个悖论即可化解。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
根源:
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化,即把形式逻辑当作思维方式。
悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无法打破,可是却导致逻辑上自相矛盾。
古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。根据悖论形成的原因,把它归纳为六种类型,所记都是流传很广的常见悖论。随着现代数学、逻辑学、物理学和天文学的快速发展,又有不少新的悖论大量涌现,人们在孜孜不倦地探索,预计他们的成果将极大地改变我们的思维观念。它们分别是:
自指引发
以下诸例都存在着一个概念自指或自相关的问题:如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。由概念自指引发的悖论和引进无限带来的悖论。
谎言者悖论
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。
《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。
“我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。
G. 求著名的数学定理 数学思想(以人名命名 )
阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡·奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理
H. 无限猴子定理到底是什么意思
应该说的是“随意”.
只需要说明“存在性”,具体大小无法确定。
例如,存在x>2,可以取x=3,或者x=4,等等............
I. 无限猴子定理到底是什么意思
让无数只猴子在无限时间内打字,能打出任何东西。
简而言之就是小概率事件在无限尝试次数下是可以实现的。