python抓板块股票的均线
1. 如何选取过去每个月股票的市值 python
类似,可以修改一下
股票涨跌幅数据是量化投资学习的基本数据资料之一,下面以python代码编程为工具,获得所需要的历史数据。主要步骤有:
(1) #按照市值从小到大的顺序活得N支股票的代码;
(2) #分别对这一百只股票进行100支股票操作;
(3) #获取从2016.05.01到2016.11.17的涨跌幅数据;
(4) #选取记录大于40个的数据,去除次新股;
(5) #将文件名名为“股票代码.csv”。
具体代码如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
获取股票的历史涨跌幅,并分别存为csv格式
@author: yehxqq151376026
"""
import numpy as np
import pandas as pd
#按照市值从小到大的顺序活得100支股票的代码
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)
#分别对这一百只股票进行100支股票操作
#获取从2016.05.01到2016.11.17的涨跌幅数据
#选取记录大于40个的数据,去除次新股
#将文件名名为“股票代码.csv”
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)
2. 已知股票数据,如何用Python绘制k线日对应数据
我没遇到过 只是自己写过
有点经验
先确定时间片
然后再把tick插入就行了
3. 如何用python获取股票数据
在Python的QSTK中,是通过s_datapath变量,定义相应股票数据所在的文件夹。一般可以通过QSDATA这个环境变量来设置对应的数据文件夹。具体的股票数据来源,例如沪深、港股等市场,你可以使用免费的WDZ程序输出相应日线、5分钟数据到s_datapath变量所指定的文件夹中。然后可使用Python的QSTK中,qstkutil.DataAccess进行数据访问。
4. 如何用python做k线形态识别
K线形态识别是比较难的一个点,难在思路上,代码都是其次。分享一下我的思路吧,通过api获取了行情信息之后(一般都是pandas.DataFrame格式,基本上都包含ohlc和volume),那么假如我需要识别十字星,那么用df['open']==df['close']把其布尔值赋值给a, 然后df['high']>df['open']>df['low']赋值给b。然后
for i in range(len(df)):
df['outcome']=np.where(a+b==1, 1, 0)
df[df['outcome']==1]
这样就能把所有的十字星给选出来了。
5. python 如何写连续8个交易日低于均线
使用pandas可以快速计算
#引入pandas包
importpandasaspd
#模拟近10天的交易数据
days=[1,2,3,4,5,6,7,8,9,10]
#生成DataFrame
df=pd.DataFrame(days,columns=['a'])
#使用rolling函数生成5日平均
df['b']=df.rolling(5).mean()
#删除空值
df=df.dropna()
#使用any函数判断是否全为真
any(df['a']<df['b'])
不清楚您python的水平,做数据工作建议多使用pandas
V:Python码农
6. 如何用python 取所有股票一段时间历史数据
各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。
7. 如何批量获取每支股票所属的所有板块
方法:如果是同花顺的话,在“报价”里面选择“板块热点”,然后就可以看到有各个板块的运行情况,点击某个板块可以看到下方有显示该板块包含的股票。
股票板块指的是这样一些股票组成的群体,这些股票因为有某一共同特征而被人为地归类在一起,而这一特征往往是被所谓股市庄家用来进行炒作的题材。
股票板块的特征有的可能是地理上的,例如“江苏板块”、“浦东板块”;有的可能是业绩上的,如“绩优板块”;有的可能是上市公司经营行为方面的,如“购并板块”;还有的是行业分类方面的,如“钢铁板块”、“科技板块”、“金融板块”、“房地产板块”等,不一而足。总之,几乎什么都可以冠以板块的名称,只要这一名称能成为股市炒作的题材。
8. 如何用python对一系列股票的macd进行判断
DIF:=EMA(CLOSE,12)-EMA(CLOSE,26);
DEA:=EMA(DIF,9);
MACD:=(DIF-DEA)*2;
忽略以上公式。
根据思路编写公式,修改公式。盘中预警,条件选股。公式解密,去除时间限制。鼠标点击下方
我
的
名
字
或(图
标)上,进入
可
看到
Q,订
制
公式
9. 如何使用python抓取炒股软件中资金数据
这个说来有点复杂,用fiddle监控软件跟服务器间的通讯,找到数据源地址,然后用excel或python抓这个源地址数据,可能还要加上反扒代码,构造时间戳等等,你网上找python网抓视频教程看看就知道了。
10. 如何用python抓取股票数据
很多服务器通过浏览器发给它的报头来确认是否是人类用户,所以我们可以通过模仿浏览器的行为构造请求报头给服务器发送请求。服务器会识别其中的一些参数来识别你是否是人类用户,很多网站都会识别User-Agent这个参数,所以请求头最好带上。
有一些警觉性比较高的网站可能还会通过其他参数识别,比如通过Accept-Language来辨别你是否是人类用户,一些有防盗链功能的网站还得带上referer这个参数等等。